SpaceX Cargo Dragon Splashes Down Loaded With Science Experiments

The insignia for the SpaceX CRS-21 mission that saw the upgraded Cargo Dragon resupply ship automatically dock to the Harmony module’s space-facing international docking adapter, a first for a U.S. commercial cargo spacecraft.
The insignia for the SpaceX CRS-21 mission that saw the upgraded Cargo Dragon resupply ship automatically dock to the Harmony module’s space-facing international docking adapter, a first for a U.S. commercial cargo spacecraft.

SpaceX’s upgraded Dragon cargo spacecraft splashed down at 8:26 p.m. EST west of Tampa off the Florida coast, marking the return of the company’s 21st contracted cargo resupply mission to the International Space Station for NASA. The spacecraft carried more than 4,400 pounds of valuable scientific experiments and other cargo back to Earth.

The upgraded cargo Dragon capsule used for this mission contains double the powered locker availability of previous capsules, allowing for a significant increase in the research that can be delivered back to scientists. Some scientists will get their research returned quickly, four to nine hours after splashdown.

Some of the scientific investigations Dragon returns to Earth are:

Cardinal Heart

Microgravity causes changes in the workload and shape of the human heart, and it is still unknown whether these changes could become permanent if a person lived more than a year in space. Cardinal Heart studies how changes in gravity affect cardiovascular cells at the cellular and tissue level using 3D-engineered heart tissues, a type of tissue chip. Results could provide new understanding of heart problems on Earth, help identify new treatments, and support development of screening measures to predict cardiovascular risk prior to spaceflight.

Space Organogenesis

This investigation from JAXA (Japan Aerospace Exploration Agency) demonstrates the growth of 3D organ buds from human stem cells to analyze changes in gene expression. Cell cultures on Earth need supportive materials or forces to achieve 3D growth, but in microgravity, cell cultures can expand into three dimensions without those devices. Results from this investigation could demonstrate advantages of using microgravity for cutting-edge developments in regenerative medicine and may contribute to the establishment of technologies needed to create artificial organs.

Sextant Navigation

The sextant used in the Sextant Navigation experiment will be returning to Earth. Sextants have a small telescope-like optical sight to take precise angle measurements between pairs of stars from land or sea, enabling navigation without computer assistance. Sailors have navigated via sextants for centuries, and NASA’s Gemini missions conducted the first sextant sightings from a spacecraft. This investigation tested specific techniques for using a sextant for emergency navigation on spacecraft such as NASA’s Orion, which will carry humans on deep-space missions.

Rodent Research-23

This experiment studies the function of arteries, veins, and lymphatic structures in the eye and changes in the retina of mice before and after spaceflight. The aim is to clarify whether these changes impair visual function. At least 40 percent of astronauts experience vision impairment known as Spaceflight-Associated Neuro-ocular Syndrome (SANS) on long-duration spaceflights, which could adversely affect mission success.

Thermal Amine Scrubber

This technology demonstration tested a method to remove carbon dioxide (CO2) from air aboard the International Space Station, using actively heated and cooled amine beds. Controlling CO2 levels on the station reduces the likelihood of crew members experiencing symptoms of CO2 buildup, which include fatigue, headache, breathing difficulties, strained eyes, and itchy skin.

Bacterial Adhesion and Corrosion

Bacteria and other microorganisms have been shown to grow as biofilm communities in microgravity. This experiment identifies the bacterial genes used during biofilm growth, examines whether these biofilms can corrode stainless steel, and evaluates the effectiveness of a silver-based disinfectant. This investigation could provide insight into better ways to control and remove resistant biofilms, contributing to the success of future long-duration spaceflights.

Fiber Optic Production, which includes the return of experimental optical fibers created in microgravity using a blend of zirconium, barium, lanthanum, sodium, and aluminum. The return of the fibers, called ZBLAN in reference to the chemical formula, will help verify experimental studies that suggest fibers created in space should exhibit far superior qualities to those produced on Earth.

Get space station news, images and features via social media on Instagram at: @iss, ISS on Facebook, and on Twitter @Space_Station and @ISS_Research.



from Space Station https://ift.tt/3nIdkaY

Comments

Popular posts from this blog

Crew Examines Worms, Explores Space Manufacturing During Spacewalk Preps

Crew Sets Up Advanced Science Gear, Loads Cargo Ship With Trash

Biology, Physics Hardware and Software Updates During Pilot Studies